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FREE-WAVE PROPAGATION RELATIONSHIPS OF 
SECOND-ORDER AND FOURTH-ORDER PERIODIC SYSTEMS 

1. INTRODUCTION 

Periodic systems are studied and modeled for use in different structures for various 
rationales. Some examples are reinforced ship hulls, railroad tracks, aircraft fuselages, and 
trolley lines. Analysis of these systems has been ongoing for many years. Some of the analysis 
can be extremely complex (reference 1) and can produce a solution to a specific problem, and 
some of the analysis can be simple (reference 2) and produces insight into system behavior. 
These problems are sometimes formulated to determine the free-wave propagation of a structure 
and sometimes to calculate the forced wave response to a specific type of load. For simple 
mechanical systems, these problems can be broken down into two specific classes: 

1. Second-order systems (such as bars and strings) where the governing differential 
equation contains a second-order derivative with respect to the spatial variable. 

2. Fourth-order systems (such as plates and beams) where the governing differential 
equation contains a fourth-order derivative with respect to the spatial variable. 

Models of second order systems begin with the wave equation in space and time. These 
systems can become periodic with the addition of stiffeners (springs) and/or masses (beads). 
These systems have been studied with multiple sets of stiffeners and masses (reference 3) to 
determine the dynamic response. The tensioned string with periodic stiffeners has been analyzed 
in the frequency domain with moving harmonic forces (reference 4) and a suddenly-applied 
concentrated force (reference 5). These papers discuss the stability of the system, particularly 
with respect to the value of the stiffeners, although there is no extension of the problem into the 
wavenumber domain. The response in a nearly-periodic beaded string has been analyzed using a 
matrix method (reference 6). A model and experiment of a nearly-periodic pendulum system has 
also been formulated (reference 7) with an emphasis on Anderson localization. 

Models of fourth-order systems typically begin with the Euler-Bernoulli beam (or plate) 
equation in space and time. These systems can become periodic with the addition of stiffeners 
(springs) and/or masses (beads).  In reference 8, a fourth-order system was studied for free-wave 
propagation and a distributed pressure load; a spatial domain solution was constructed and a 
contour integral was evaluated to transfer the expression into the wavenumber domain. This 
work contains an expression for free-wave propagation in the reinforced plate. The work in 
reference 8 was extended to stiffened plates with line and point forces (reference 9). Work has 
also been completed on the modeling of plates that have sectional aperiodicity (reference 10). 

The present report develops a relationship between the determinant of a periodic system 
dynamic matrix and an analytical expression. Specifically, the case of free-wave motion is 
investigated in the wavenumber frequency domain. Two separate methods are used to solve the 



periodic problem. First, a series solution to the problem is generated and this is converted into a 
closed form analytical expression using infinite series of residues. Next, a matrix solution is 
formulated. By equating functions of the two methods for free-wave propagation, an analytical 
expression is derived when the determinant of the system matrix is zero. This expression is 
useful for understanding the behavior of these diagonally-indexed, full matrices. This method is 
applied to both a second-order and fourth order system. The origin of each individual problem is 
discussed, and two numerical examples are illustrated. 

2. SECOND-ORDER SYSTEM 

The motion of a reinforced string is a second-order system that is governed by the wave 
equation. If the stiffeners reinforcing the string are equally spaced, and if the string has infinite 
spatial extent, then the partial differential equation modeling this motion in the spatial-time 
domain is 

,d2w(x,0 
dx2 

82W(XJ)        \.       .       ^V^-/        \ C/ TX 

dr ,r± 
(1) 

where 

w(xj) is the transverse displacement in the v-direction, 

x is the spatial location on the string, 
/ is time, 
Tis the tension, 
p is the mass per unit length, 
f(x,t) is the external load on the string per unit length, 

K is the stiffness of each reinforcing member, 
L is the distance between adjacent stiffeners, and 
5 is the Dirac delta function. 

Using a point load that is harmonic in time, and transferring equation (1) into the 
wavenumber-frequency domain yields (reference 3) 

(k  -k,)w(k) = ——— 2^wk + — (2) 

where w(k) is the transverse displacement in the v-direction, k is the wavenumber, F0 is the 

magnitude of an applied point force at x = 0, and k, is the free wavenumber of the unreinforced 
string and is given by 



k,-S- 
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where co is the frequency and c, is the free-wave speed of the unreinforced string. Note that the 

free wavenumber implicitly contains the frequency. The solution to this equation has been 
previously solved and is given by 

F0 (k2-kr) 
^    n        > 

(4) 

where k„ = k + 2nnlL and it is noted that k„ = k . The solution given in equation (4) is now 

converted from a series solution into a closed-form solution using an analytical expression for 
the summation in the denominator. Using the analytical expression given by (reference 11) 
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Equation (5) can be inserted into equation (4), and this yields the system response: 
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For free-wave propagation to exist in this system, the denominator of equation (6) must be zero, 
i.e., 
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The term k2 - k2 is not a free-wave propagation condition for the reinforced system because 

when k2 = k2 this term will cancel with one of the terms in the numerator of equation (6). The 
relationship between wavenumber and free wavenumber (and thus frequency) for free-wave 
propagation for the reinforced system is 
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sin 
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and this yields the multi-valued solution to the wavenumber, written as 

k = ± 
2       . Inn 
— arcsin(6') +  
L L 

•2,-1,0,1,2- , (9) 

provided that 

-1<6><1 , 

which can be alternatively stated as 

tan 
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K 
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(10) 

Another method to solve this problem can be constructed based on the spatial periodicity. 
Equation (2) can be changed using k„=k + 2nn/L so that an infinite number of indexed 
equations are written as 

= +oo 
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(11) 
n=-x 
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These individual equations can be placed into matrix format as 

[D] + 
tK^ 

\TLj 
[1] {w} = {f} , (12) 

where [D] is a diagonal matrix whose entries are equal to {k; - kj), [1] is a matrix whose entries 
are all 1, {w} is a vector of the unknown displacements, and {f} is a vector of all ones multiplied 
by - F0 / T. The matrix in equation (12) can be truncated to a finite number of terms and solved, 
yielding 

{w} = [D] + 
( K^ 

-I-I 

\TLj 
111 it), (13) 



Note that once equation (13) is solved, the displacement term that corresponds to the system's 
displacement in the wavenumber domain (equation (6)) is wQ(k0). If enough terms are chosen in 
equation (13), this solution will converge on the expression in equation (6). For the system 
presented in equation (12) to support free wave propagation, it is necessary that 

det^[D] + |^-l[l]l = 0 (14) 

Therefore, the relationship between the determinant in equation (14) and the system's free-wave 
propagation requires that 

det 

k2l -tf + JL} K K 

k TL) TL TL 
K 

TL 
-k,- + — 

TLj 

K 

TL 
K K f 

k{ -k: +— 
TL TL k. TL) 

= 0 , (15) 

if, and only if, 

. (kL 
sm — 

I 2 
sin' 

k,L) K 

2Tk, 
•cos 

'k,o 
sin 

V   ^   ) 

(k,L^ 

V   -i   ) 
(16) 

This relationship is illustrated graphically in figure 1. For this example, the frequency is 
275 Hz, the tension is 100 N, the mass per unit length is 1 kg m1, the stiffener spring constant is 
30,000 N/m, the stiffener spacing is 0.05 m, and 37 terms were used to construct the determinant. 
The solid line in this figure is a plot of the determinant of {[D] + [£ /(ri)][l] \ in the decibel 
scale versus wavenumber from -600 rad/m to 600 rad/m. The solid black dots are the free-wave 
propagation wavenumbers calculated from equation (9), and these match the minimum values of 
the determinant with respect to the wavenumber. 
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Figure 1. Magnitude of Determinant vs Wavenumber for a Second-Order System (solid line) 
and Free-Wave Propagation Wavenumbers (dots) Calculated from Equation (9) 

3. FOURTH-ORDER SYSTEM 

The motion of a thin, reinforced plate is a fourth-order system that is governed by the 
Euler-Bernoulli plate equation. If the reinforcing ribs are equally spaced, and if the plate has 
infinite spatial extent, then the partial differential equation modeling of this motion in the spatial- 
time domain is 

34w(x,/)      ,82w(x,t)       *,,     ,       "v^-,     vfi/ D- + ph-        — = -f{x,t)-K2_Jw(x,t)Ux-nL)   , 
dx* df 

(17) 

where vv(x,0 is the transverse displacement in the v-direction, x is the spatial location on the 

plate, t is time, p is the density, h is the height of the plate, f(x,t) is the external load on the 

plate, K is the stiffness of each rib per unit length, L is the distance between adjacent ribs, and 8 
is the Dirac delta function. The flexural rigidity of the plate D is 

D = 
Eh' 

\2{\-v2) 
(18) 



where u is Poisson's ratio and E is Young's modulus of the plate. Using a line load that is 
harmonic in time, and transferring equation (17) into the wavenumber-frequency domain, yields 
(reference 10) 

(kA-kA
r)w(k) = 

D      DL ±L 
k + 

2mi 
(19) 

where w(k) is the transverse displacement in the v-direction, k is the wavenumber, F0 is the 

magnitude of the applied line force at x = 0, and k, is the free (flexural) wavenumber of the 

unreinforced plate and is given by 

*/ = 
D 

I   4 

(20) 

where co is the frequency. The solution to this equation has been previously solved and is given by 

Mk) -1 

F0 (k*-k<) 

(21) 

The solution given in equation (21) is now converted from a series solution into a closed form 
solution using an analytical expression for the summation in the denominator. Using the 
analytical expression given by reference 11 
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Equation (22) can be inserted into equation (21), and this yields the system response: 
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and 
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For free-wave propagation to exist in this system, the denominator of equation (23) must be zero, 
i.e., 

A = 0 , 

where A is rewritten as 
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It is noted that Mace (reference 8) developed a similar expression for this relationship, although 
his parameter set was non-dimensional. The term k4 -kj is not a free-wave propagation 

condition for the reinforced system because when kA = kA this term will cancel with one of the 

terms in the numerator in equation (23). Equation (27) yields a system with free-wave 
propagation whenever 

fkO 
cos = ±« 

\-b + ylb2 -Aac 

V * J 2a 
= 4, (31) 



provided that 

-\<d><\ (32) 

Numerical simulations suggest that the second root that contains a minus sign inside the radical 
is extraneous. If the conditions listed in equation (32) are satisfied, then the wavenumber where 
the free-wave propagation occurs can be calculated using the formula 

k = ± 
2 Inn 
— arccos(0) +  
L L 

n - 2,-1,0,1,2 (33) 

If the condition listed in equation (32) is not satisfied, then the system does not support free- 
wave propagation at that specific frequency. 

An alternative method to solve this problem can be constructed based on the spatial 
periodicity using equation (19) and the relationship/:,, - k + 2rmlL . This yields 

(^-*;w*,)=^-^Xvv,,(*,,) 
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The individual equations from equation (34) can be placed into matrix form as 

[DH^)[1] W = {f} , (35) 

where [D] is a diagonal matrix whose entries are (kA -kA,), [1] is a matrix whose entries are all 

1, {w} is a vector of the unknown displacements, and {f} is a vector of all ones multiplied by 
- F0/ D. The matrix equation in equation (35) can be truncated to a finite number of terms and 
solved, yielding 

{*) = [D] + 
K 

DL) 
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Note that once equation (36) is solved, the displacement term that corresponds to the 
displacement of the system in the wavenumber domain is w()(k0). If enough terms are chosen, 
this solution will approach the expression in equation (23). For the system presented in equation 
(36) to support free-wave propagation, it is necessary that 

de. WfW = 0 • (37) 

Therefore, the relationship between the determinant in equation (37) and free-wave propagation 
of the system requires that 
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This relationship is illustrated graphically in figure 2. For this example, the following 
applies: 

Frequency is 100 Hz. 
Thickness of the plate is 0.005 m. 
Young's modulus of the plate is 200e9 N m~2. 
Poisson's ratio of the plate is 0.3. 
Density of the plate is 7860 kg m~ . 
Stiffener spring constant per unit length is le6 N m 2. 
Stiffener spacing is 1.0 m. 
Eleven terms were used to construct the determinant. 

The solid line in this figure is a plot of the determinant of [D] + [K l{DL)}[\] in the 
decibel scale versus wavenumber from -20 rad/m to 20 rad/m. The solid black dots are the free- 



wave propagation wavenumbers calculated from equation (33), and these match the minimum 
values of the determinant with respect to the wavenumber. 

570 

-5 0 5 
Wavenumber (rad/m) 

20 

Figure 2. Magnitude of Determinant vs Wavenumber for a Fourth-Order System (solid line) 
and Free-Wave Propagation Wavenumbers (dots) Calculated from Equation (33) 

4. SUMMARY 

An analytical expression for free-wave propagation for periodic systems has been 
developed by solving for the dynamic behavior using two separate methods and equating the 
results. This process yields a relationship between a diagonally-indexed, full determinant of a 
large matrix when it is zero and a simplified analytical expression. This process was undertaken 
for both a second and fourth order system. Two example problems are included to illustrate the 
accuracy of this process. 
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